Programming with Python 1

NITARP 2013: SHIPs
Babar Ali

Python on SHIPs 1




Topics

* Computer programs
»What is a program?
»Why program?

» Not useful programming

* Some Introductory Concepts:
» Components of a program

» Memory: Variables and Disks
» Current working directory

* Python, Anaconda, Spyder




PROGRAMS



What is a program?

6 a: a plan for the programming of a mechanism (as a
computer)

b : a sequence of coded instructions that can be inserted into
a mechanism (as a computer)

C : a sequence of coded instructions (as genes or behavioral
responses) that is part of an organism

Merriam-Webster online dictionary _

Python on SHIPs 1 4




What is a program?

Its how you tell a computer what you would like
it (computer) to do for you.

However ...

At the fundamental (lowest) level, computers
speak assembly language.

Assembly language is:
» Specific to the computer architecture

» Difficult for (most) humans

» Really only useful for the most fundamental
operations (e.g. clean memory register XXXNNFF)




NASM code to print “hello world”

_start:

message:

global

section

_start

.text

; write(l, message, 13)

mov
mov
mov
mov
int

eax, 4 s
ebx, 1 H
ecx, message -
edx, 13 -
80h

; exit(0)

mov
mov
int

db

eax, 1 H
ebx, 0 s
80h

"Hello, World", 10

system call 4 is write

file handle 1 is stdout
address of string to output
number of bytes

system call 1 is exit
we want return code 0

Python on SHIPs 1




Normal Humans Need Translators

“High-level programming languages”

invented to make it easier to talk to machines.

But, at the expense of efficiency, and some

other aspects — not really our concern.

High-level languages:

» Provide a bridge between humans and computer’s
preferred assembly language level

» Are not specific to machine architecture

»Require a “compiler” to create assembly object




“Hello World” in C

/* Hello World program */
#tinclude<stdio.h>
main()

} printf("Hello World");




“Hello World” in C

But, the instructions must be
“compiled” (read translated) from C-language
to assembler

Here’s one way:
gcc -0 helloworld -ansi helloworld.c

As long as ‘gcc’ compiler exists on a machine,
you can write and run C-code on it

The resulting assembly language instruction
will differ from machine to machine




Two flavors of high-level languages

Compiled

Require code to be
compiled to run

Examples: C, C++,
FORTRAN, ...

Pros: Faster, more
control, more flexible

Cons: Harder, and
compiling gets
cumbersome

Scripting

Interpreter/compiler is
“always ON” — just run
It.

Examples: Python, Perl

Pros: Easier to use,
More “portable”

Cons: SLOOWWW, less
flexibility




“Hello World” in Python

print “Hello world”




How does one create a program?

High-level programs and scripts are simply
written as ASCII (a.k.a text) files.

Simple programs may only use one file for all
of their instructions.

E.g. print “Hello World”

Complex programs rely on system engineering
concepts to organize 100s or 1000s+ files.




More on Writing Programs

* You can use simple text editors: vi, textedit
(MacOS), notepad (Windows), emacs, etc.

* You can also use applications specifically
designed to help you write programs.

» Will provide automatic checks for the fundamentals:
E.g. parenthesis, typos

» Use color-coding to highlight specific types or blocks
of code.

» Will automatically perform basics like indentation
» And ... much, much more (to be covered in Spyder)




How do you execute, run programs?

* First, the format that is ready for execution is
called an executable.
» An executable is usually a compiled (remember

translated) version of the program for compiled
languages.

»The equivalent for scripting languages is simply
the script itself.




Running programs, cont.

* Many ways to start:
» Command line. Usually, Unix, Linux, type systems
» Double click.
» Tap (an app on a ipod, smart phone)

» Issue the proper command in the development
environment.

» Instructed by other programs at the basic level.
» And, many more.

* For SHIPs, We will (usually) rely on python
development environmen (Spyder)




Jargon

Code

» usually refers to instructions for a compiled or scripting
computer language.

Script
» usually refers to scripting language code.
Program
» usually refers to compiled language code.
Run = execute
» Have the computer carry out the instructions in your code
Executable

» Format in which your code is able to run. Script for scripting

language and translated assembly language code for compiled
language.




More Jargon

* Bug

» A fault in the computer code. As simple as a typo to
as complex as fault in programming logic

* Debug

» The process by which you identify and remove the
bugs. Or, the command to do so.

 Portable

» Able to run on many types of operating system +
machine architecture combination. 100% portability
is a myth.




Yet More Jargon

Function ... in this context.

» A basic programming unit. You write a function to do one thing
(usually).

Libra I'Y ... in this context.

» An organized collection of programes, i. e. functions that is
(usually) focused on a specific topic.

» Example: CFITSIO is a set of C-language functions devoted to
FITS format input and output calls.

App
> An executable

Comment

» Line(s) in the code that the compiler or interpreter (for scripts)
skips and are meant only for humans.




Why program?

e Use the power of computers to do just about
anything.
* Specifically for SHIPs:

» Manipulate and use data that are tedious or
impossible to do by hand (on a calculator, say).

» Computers are faster.

» Minimize errors: Computers are good at math (intel
PENTINUM issues not withstanding).

» Repeat the same operation many times for a given
star on a multiple stars




SHIPs specific use cases

Read an APT output table file into memory.

Write a DS9 region file using a table of either (x,y) or
(ra,dec) positions and ID.

Read SHIPs ASCII format data table.
Write SHIPs ASCII format data table.
Merge photometry tables.

Create 2-dimensional plots of various types: scatter
plots, line plots, histograms. These plots may have
multiple data sets on them.

Save plots to a JPG, PNG or similar graphic format file.




Not useful programming

* Obviously, anything that does not involve
computers.

* Otherwise, few instances when dealing with
computers do not benefit from programming:

» Writing large chunks of text such as a novel,
unless the text can be auto-generated.

» Anything that requires interactivity (web
browsing, computer games)




SOME INTRODUCTORY CONCEPTS



Elements of a program

Simply, A series of instructions for the
computer.




A simple program

* |nstructions contained (usually) in a single file.

* Typically,

> \Write a function to do a fundamental
manipulation or operation

» Write an overseeing program to call and execute
functions in a set order or logic

* Most of SHIPs programs should fall in this
category




Adding complexity

Users are prompted for input.
Read data, instructions from a separate file
Execute functions based on conditions.

Do many, many, many things instead of a
single one.

Incorporate Graphical User Interfaces (GUIs).




Good practices

Comment often and be verbose. Imagine talking to
yourself 5+ years from writing the code.

Test and debug as much as possible.

If using the same operation over and over, define a
function.

Define and use naming conventions for variables, files.

(for SHIPs) keep the logic simple and easily readable even
at the expense of efficiency.

Organize code in logical blocks that are clearly separated.

Develop and use an organization scheme for code that
spans 10s+ files.

Separate Code from Data




Memory

* There are Two types:
»Random Access Memory (RAM).
» Disk/physical Storage.

* RAM is “live” memory only available when
computers are ON.

* Disks store information using some semi-
permanent physical mechanism that is not
dependent on power.




Memory and programs

Programs rely on RAM for faster execution.
Programs rely on Disks for permanent storage.

When the program is running, RAM is being
used.

Disks are (usually) used only for storage of
data/information.




Variables in memory

* Variables, in computer jargon, are elements of a

programming language that deal with RAM to
hold data during execution.

* There are many different types of variables
ranging from byte (least memory) to quadruple

precision arrays (most memory) to store precise
numerical values.

* Good practice:

minimize memory consumption = use variable types
appropriate for the job.




Disks

Programs use physical disk space to store data
and/or results in files.

Accessing disks is 100s-1000s of times slower
than accessing RAM.

It’s a bad idea to use files instead of variables
for memory during execution.

It’s a bad idea to use variables instead of files
to store final results — variables cease to exist
as soon as the program terminates.




Exercise

NGC 281 Level 1 Herschel/PACS frames for the
blue channel comprises about 150,000 images.

Each image has 2048 pixels (70 micron data).
Each pixel data is 64-bits = 8 Bytes in HIPE.

Calculate the size (in Gigabytes) of the variable in

RAM that holds the level 1 cube.

Calculate the size of the FITS files on disk that

holds the data, assuming that
* Only 16-bits = 2 bytes are used for storage.
e FITS format compresses data by a factor of 2.

Python on SHIPs 1

31




Current Working Directory

When reading or writing (storing) files, the
computer reads, writes to a given folder.

This folder is the “current working directory”.

Scripting or compiling languages have different
assumptions for where the “current working
directory” lies.

Default is (usually) where you started executing
the program.

Best practice: Define it explicitly in your program.




USING PYTHON FOR SHIPs



Why Python?

* Python is a scripting language:
e Easier to program than compiling languages.

* Example:
Define the variable ‘a’ and set it to contain the value 10.2
In memory
float a; In C: First declare the
a=10.2; variable, then use it.

a=10.2 In Python: Simply use it.




Which Python?

* Barebones python is not a practical choice.

* A pre-packaged distribution solves a number
of issues:

» Useful libraries are already included and
compiled.

> Version conflicts between libraries are avoided.




Anaconda

http://continuum.io/downloads.html

Its free.

Windows, MacOS, and Linux support.
numpy, scipy libraries included.
plotting libraries included.

Many (not all) useful astronomy libraries are
included.




Collaborative Development

* Use and exchange code amongst team
members.

* |ssues for SHIPs code:
»Where do we store code?

» How do we know this is the correct version?
»Who to ask questions?




