Making Spitzer Mosaics From BCDs And Extracting Photometry From The Resultant Mosaics:

An Overview And (Most Of) A Cookbook

Based Primarily On Data Reduction For IC 2118

7/29/07
Overview…

For every band, the idea is that we will use a program called MOPEX to combine the BCDs into a mosaic. We need to tell MOPEX which frames we want it to combine. For each case, we will look first at the mosaic that comes from the BCDs as produced by the pipeline and see if we need to do additional artifact mitigation. If we do need to do additional artifact mitigation, we will do that additional processing (usually outside of MOPEX) and then ask MOPEX to combine those corrected images. Then we can ask MOPEX to do source extraction on the mosaic we have created. In each case, we need to set some things that are customized to each channel.

Preliminaries…

If you haven’t done this yet, go and grab the MOPEX software for your platform from http://ssc.spitzer.caltech.edu/postbcd/download-mopex.html, follow the directions, install it, and start it up. Make sure that, under the "Options" menu, the option "Use Automatic Version Update" is selected. If this is the first time you have installed MOPEX, you will probably have to wait a few seconds, and then MOPEX will say that there is a new version of the software available. Let it go and grab the new version and restart.

Where it’s necessary below, we have assumed that you are working from a terminal window on a unix machine of some flavor (linux, solaris, mac OS X).

If you haven’t done this yet, unzip all of the files that Leopard puts on your disk. The “unzip” routine is a little funny – all other unix commands that you want to operate on more than one file will take “*” as a wildcard, e.g.,

ls *.fits.

However unzip does not work that way. In order to make it unzip more than one file, you must use a “\”character, e.g.,

unzip *.zip

It creates a lot of files; detailed descriptions of which files are which can be found on the SSC website. (http://ssc.spitzer.caltech.edu/archanaly/ under “filenaming convention”)

From here, we assume that you are now sitting in a directory that contains all of the directories (or just the one directory) that resulted when you unzipped, e.g., the ones labeled by the letter "r" followed by a 7-digit number. This 7-digit number is the AORKEY, and each AOR has a unique AORKEY identifying it throughout the mission, so each AOR will result in a different directory.

If you have IRAC data…

What does the pipeline produce? We would like to combine all of the BCDs from a given channel into one mosaic. But we need to know a little about how the telescope took data first.

Do you have HDR (high-dynamic-range) data? If so, the telescope takes a short and a long exposure at each position. (If you are integrating for a long time, it will take a short, a medium, and a long exposure at each position.) The IC 2118 data is 12s HDR, so there is a short and a long exposure at each position. We will need to create lists of just the short and just the long files.

Make the lists of files. You need the input BCD files, listed in a file, one file per line. However, these observations were taken in HDR mode, so for each position, two frames are obtained, a short and a long frame. These observations need to be processed separately. So, we need to create two files, one listing the short exposures (even exposure ids=epxids), and the other listing the long exposures (odd expids). Here is a nifty unix trick to instantly just get the odd- or even-numbered files in a file, one file per line (assumes you're sitting in the directory as above -- don't copy the "unix%" part, just the commands):

 unix% ls r*/*bcd.fits | awk 'BEGIN{i=0}{if (i%2) print $0; i++}' > oddlist.txt

 unix% ls r*/*bcd.fits | awk 'BEGIN{i=1}{if (i%2) print $0; i++}' > evenlist.txt

For these observations, the even files are the short exposures and the odd files are the long exposures. You also need a similar list of the corresponding uncertainty files (*bunc.fits files) and dmask files (*bdmsk.fits files). (Don't copy the "unix%" part, just the commands, and everything between “ls” and “.txt” should be on one line for each channel; here it’s just given for channel 1.) Depending on exactly what you downloaded, your directory structure might be a little different; be sure that these files actually contain filenames, one per line.

unix% ls r*/ch1/bcd/*bcd.fits | awk 'BEGIN{i=0}{if (i%2) print $0; i++}' > InputImageListlong.txt

unix% ls r*/ch1/bcd/*bcd.fits | awk 'BEGIN{i=1}{if (i%2) print $0; i++}' > InputImageListshort.txt

unix% ls r*/ch1/bcd/*bdmsk.fits | awk 'BEGIN{i=0}{if (i%2) print $0; i++}' > DmaskListlong.txt

unix% ls r*/ch1/bcd/*bdmsk.fits | awk 'BEGIN{i=1}{if (i%2) print $0; i++}' > DmaskListshort.txt

unix% ls r*/ch1/bcd/*bunc.fits | awk 'BEGIN{i=0}{if (i%2) print $0; i++}' > SigmaListlong.txt

unix% ls r*/ch1/bcd/*bunc.fits | awk 'BEGIN{i=1}{if (i%2) print $0; i++}' > SigmaListshort.txt

Make output directories. Currently the MOPEX gui can get confused if you ask it to create a directory, so might as well do it now. This is my naming convention; you can use whatever you want (fred, george, ron, ginny)…

unix% mkdir pbcd3.6long

unix% mkdir pbcd3.6short

(etc.)

Start mosaicking. Start up MOPEX. Go up to the File menu and choose "new Mosaic pipeline." Pick the channel you want from the popup window - try IRAC channel 1.

It will have a window called “Current Module flow” whose first entry is “Initial Setup.” Tell it where your Image Stack File is for your regular bcds by clicking on “Add” under “Image Stack File.” Pick the list of just the shorts or just the longs for IRAC channel 1 (InputImageListlong.txt above). Make sure you choose the same channel as the template you just selected. (If you picked "IRAC channel 2" on the previous step, pick one of the lists of IRAC channel 2 files.)

Under the "Output Directory" part of the window, click on "add" and pick a place for MOPEX to put its (copious) output. Pick, e.g., pbcd3.6long, whatever you created above.

 Click on "Optional Input and Mask Files." In the pop-up window, under "sigma list file", click on "add" and pick the file that is the list of the uncertainty files you want to combine, e.g., SigmaListlong.txt -- make sure you choose the same channel as the template you just selected. (If you picked "IRAC channel 2" on the previous step, pick the list of IRAC channel 2 files.) Under “DCE Status mask list”, choose the list of masks you created, e.g., DmaskListlong.txt. Leave the Rmask list file alone. For the Pmask FITS file, click on “add” and find the calibration (“cal”) directory that came with your MOPEX installation, then find the pmask file corresponding to the channel you are using. (If you picked "IRAC channel 2" on the previous steps, pick the IRAC channel 2 file. Be sure it is not the subarray pmask file.)

The pmasks tell you which pixels are the permanently damaged pixels, so there is just one per array, but the details of which pixels are injured changes with time, depending on how much solar activity we have endured. To find out which pmask to use, see the README that is in the cal directory, and compare those dates to the dates that your observation was taken. The fatal bit setting to use is 18304.

The rmasks tell you which pixels are affected by temporary things such as cosmic rays or instrumental effects. Therefore, there is one per frame taken. If you are using old data, not recently reprocessed, the fatal bit setting to use is 32544. If you are using recently reprocessed data, evidently, or data you reprocessed with Sean’s artifact corrector (see below), then the fatal bit setting to use is that corresponding to the imasks, or 28424.

The definitions of what these specific bit settings mean can be found on the SSC website. (http://ssc.spitzer.caltech.edu/irac/products/ under “mask definitions” and analogously for MIPS.)

Click OK on the popup window and you will be returned to the main MOPEX window.

Go up to the top left of the window and hit the green button that looks like "Play" on a DVD player. Sit back and watch it run. You may need to go get a soda while it runs.

When it finishes, you can examine the mosaic it produces by clicking on the buttons in the final module in the MOPEX window. It actually puts the mosaic in the output directory you selected, in a subdirectory called “Combine-mosaic.” The mosaic is the mosaic.fits file, there is also a coverage mosaic, and two different error mosaics – one calculated using some noise assumptions within MOPEX, and one using the actual scatter in the real data.

The other things that are created by the mosaic routine are (filenames may slightly vary):

Coadd/
: Coaddition data products

Combine/
: Combined mosaics

Detect/
: Detection maps

Dmask/
: Updated dmasks, contain radhit info

DualOutlier/
: Dual Outlier data products

Interp/
: Interpolated BCDs, with outlier rejection

Medfilter/
: Individual median subtracted BCDs

Outlier/
: Outlier data products

ReInterp/
: Reinterpolated BCDs with dual outlier rejection

Rmask/
: Rmasks, with outlier and dual outlier info

Rmask_Mosaic/
: Combined rmask mosaics

mosaic_fif.tbl
: Mosaic FIF table

mosaic.nl
: Used namelist

Do you have artifacts you wish to remove? The mosaic that you produce in this fashion may very well have residual instrumental artifacts. In order to “train your eye”, look on the SSC website for example artifacts.

(http://ssc.spitzer.caltech.edu/archanaly/ under “data features/caveats” or in the data handbooks for each instrument.)

Remove the artifacts! You will need to run Sean’s artifact removal code. This can be found linked from the SSC website (http://spider.ipac.caltech.edu/staff/carey/irac_artifacts/). This uses IDL and does artifact removal for all 4 IRAC channels at once. We did this for IC2118, and found a few bugs. We followed the directions from Sean’s pages.

(downloaded the tarball from Sean's software website)

(dowloaded and unzipped the BCD data files from leopard)

scsci101% gunzip *gz

sscsci101% tar -xf cal_23aug05.tar

 creates directory called cal

tar -xf cdf_23aug05.tar

 creates directory called cdf, which has namelists

 (largely obsolete)

sscsci101% tar -xf irac_preprocess_13oct05.tar

 creates directory called irac_preprocess

sscsci101% rm *tar

 you don't need to keep the tarballs around anymore

sscsci101% ls

cal/ irac_preprocess/ r16940288/ r16941312/ r16941824/

cdf/ r13375232/ r16941056/ r16941568/

sscsci101% ls r16940288

ch1/ ch3/ QualityAnalysis_16940288.README

ch2/ ch4/

sscsci101% mv r13375232/ch? ./

sscsci101% mv r16941056/ch1/bcd/* ch1/bcd

sscsci101% mv r16940288/ch1/bcd/* ch1/bcd/

sscsci101% mv r16941312/ch1/bcd/* ch1/bcd

sscsci101% mv r16941568/ch1/bcd/* ch1/bcd

sscsci101% mv r16941824/ch1/bcd/* ch1/bcd

mv r16940288/ch2/bcd/* ch2/bcd/

mv r16941056/ch2/bcd/* ch2/bcd

mv r16941312/ch2/bcd/* ch2/bcd

mv r16941568/ch2/bcd/* ch2/bcd

mv r16941824/ch2/bcd/* ch2/bcd

mv r16940288/ch3/bcd/* ch3/bcd/

mv r16941056/ch3/bcd/* ch3/bcd

mv r16941312/ch3/bcd/* ch3/bcd

mv r16941568/ch3/bcd/* ch3/bcd

mv r16941824/ch3/bcd/* ch3/bcd

mv r16940288/ch4/bcd/* ch4/bcd/

mv r16941056/ch4/bcd/* ch4/bcd

mv r16941312/ch4/bcd/* ch4/bcd

mv r16941568/ch4/bcd/* ch4/bcd

mv r16941824/ch4/bcd/* ch4/bcd

sscsci101% du -sk *

 check disk usage

 DiskUsage -SummarizeinKilobytes

sscsci101% du -sk *

7440 cal

155 cdf

2334548 ch1

2430682 ch2

2324982 ch3

2325248 ch4

580 irac_preprocess

3 r13375232

692 r16940288

32 r16941056

692 r16941312

40 r16941568

24 r16941824

sscsci101% vi make_corrected_bcds.tcsh

 edit the script to customize it to what you want to do.

 comment out lines you don't want == add a # sign to the front of the line

the ic2118 data are HDR = High Dynamic Range

 for every pointing, there is a short and a long exposure.

 this is also 12s HDR, no repeats.

 so you need to uncomment the HDR section

 but leave commented out the 100s HDR, and the stuff mentioning

 "if you have repeats you need to do..."

 also leave commented out the stuff on the muxbleed models,

 since we're not creating new ones.

depending on your tcsh quirks, you may need to escape the "!" signs.

 (you may need to go through and insert \ before all instances of !)

actually run it!!

sscsci101% ./make_corrected_bcds.tcsh > run.log &

following the command by "&" puts routine in the background so that you can still use the terminal or even log out and it will still run.

sscsci101% ls | wc

 wc = word count, count how many lines, words, characters there are

there are a LOT of files here! There will be even more as Sean’s stuff runs.

sscsci101% ls *log

sscsci101% more get_originals.log

sscsci101% ls -altr *log

-rw-r--r-- 1 rebull ssc 123 Jul 12 09:32 make_corrected_bcds_21347.log

-rw-r--r-- 1 rebull ssc 73 Jul 12 09:34 get_originals.log

 ls -a means list everything

 -al means list everything, long format

 -alt means list everything, long format, sort by time

 -altr means list everything, long format, sort by time, reverse order

 (put most recently modified file at the end)

Keep an eye on your disk space so that you don’t run out of space to put new files.

sscsci101% /usr/ucb/df .

Filesystem kbytes used avail capacity Mounted on

sscsci00:/ssc/sci/pleiades

 1073741824 923065362 150676462 86% /stage/ssc-sci-pleiades

scsci101% tail make_imasks_from_dmasks.log

 give me the last 10 lines of the file

sscsci101% tail -20 make_imasks_from_dmasks.log

 give me the last 20 lines of the file

sscsci101% tail -f make_imasks_from_dmasks.log

 follow along and update my screen as soon as the file is updated.

 control-c to get out of this.

ls -altr *log

Watch all the logs for any instances of ERRORs... if you see one, you need to

control-c out of the main tsch script and go diagnose and fix the error.

We found one error, where it was complaining about being unable to find the cal directory.

We had put the cal directory in the same dir as where we were working, so it really has no excuse for being unable to find it. It turned out to be an error associated with something that my .cshrc was printing as feedback to the screen.

After fixing this, then we just started the whole thing again....

We found two bugs in the routines, in addition to the .cshrc stuff. We fixed them and updated the files.

Because our data have not been recently reprocessed, the final step is to do the stray light masking. Data processed under S15 and later has this as part of the pipeline, but since we are working with S14 data, we need to do this step. The straylight masker lives here:

http://ssc.spitzer.caltech.edu/irac/straylight/

And an older version is included in Sean's tarball.

sscsci101% ls irac_preprocess/*straylight*

irac_preprocess/mask_straylight_v5p1.pro irac_preprocess/update_straylight.idl

On the web, though, is version 5.2, rather than 5.1. So we get it and copy it over. We follow the directions on the web to run it. However, the web instructions talk about 2mass source lists that get returned with your data, and despite the fact that these data have not been recently reprocessed, we are not allowed to get the 2mass source lists any more either. Sigh. Since our data haven't been reprocessed, so we have

to fake it.

I determined the range of ra, dec we need for the whole map. I did this by loading a mips mosaic from last summer and examining it to find the min and max ra/dec, but you could also do this from examining the pipeline mosaics directly from leopard. in this case, don't forget we're going over multiple AORs, so need to look at max/min ra/dec for *everything*.

For IC 2188, in decimal degrees, we're covering this region.

77.08179, -5.84776 to 75.38529, -8.51821

go here:

http://irsa.ipac.caltech.edu/applications/Gator/

pick 2mass, click select.

on the next page,

pick psc, click select

on the next page,

pick polygon and put in a box covering the region:

77.08179 -5.84776, 77.08179 -8.51821, 75.38529 -8.51821, 75.38529 -5.84776

note comma placement. don't need to close the box, it understands that.

click 'run query'

wait for it to come back.

view the table.

save the file. (there are 17,873 sources in my list)

we'll need this downstream for bandmerging.

but now we need to make sure it's formatted right for use in the

straylight routine.

the straylight webpage says:

If you generate your own 2MASS table (e.g., with an IRSA Gator server

query), the following columns (and only these columns) must be in the

table: 1. Right Ascension, 2. Declination, 3. dRA, 4. dDec, 5. delta, 6. J

mag, 7. H mag, 8. K mag.

in theory, on the gator page, we can select only those 8 columns to be

returned, but it's not working for me.

so i wrote a program to reformat the output.

convert2mass.pro

not terribly flexible, would only work for this number of sources, but

hey, it works.

now have ic2118.reform2mass.tbl

straylight web page says it can overwrite the masks, so save a copy.

mkdir imaskbackup

ls *list

head ch1_med_dmasks.list (from this i learn all the files are called

 *bimsk.fits)

cp SPITZER*bimsk.fits imaskbackup

gets a complaint re: too many files. Try one channel at a time

cp SPITZER_I1*bimsk.fits imaskbackup

cp SPITZER_I2*bimsk.fits imaskbackup

cp SPITZER_I3*bimsk.fits imaskbackup

cp SPITZER_I4*bimsk.fits imaskbackup

get into idl.

.r mask_straylight_v5p2.pro

mask_straylight_v5p2, 'ch1234.list', 'ch1234_dmasks.list', 'ic2118.reform2mass.tbl', $

 /CHDMSK, /UNAGGR

ooooh, this is GLACIAL. maybe 1 file a second if lucky, usually 1 file

per 3 seconds. 6480 files * 3sec = 5.4 hrs. ohhhhh i bet it's looping

through the large two mass catalog separately each time or something like

that.

After it finishes….

Sean’s code requires a flat directory structure that is pretty awful to work with, so I do a little reorganzation. The final files you actually want are:

 over_cor_sfx_SPITZER_I[1-4]..._bcd.fits

 cor_sfx_SPITZER_I[1-4]..._bunc.fits

 SPITZER_I[1-4]..._bimsk.fits

I moved all of these to sean_final

I moved all other intermediate files to sean_intermed

I moved all log files to sean_intermed

mv over_cor_sfx_SPITZER_I1_*_bcd.fits sean_final

mv over_cor_sfx_SPITZER_I2_*_bcd.fits sean_final

mv over_cor_sfx_SPITZER_I3_*_bcd.fits sean_final

mv over_cor_sfx_SPITZER_I4_*_bcd.fits sean_final

mv cor_sfx_SPITZER_I1*bunc.fits sean_final

mv cor_sfx_SPITZER_I2*bunc.fits sean_final

mv cor_sfx_SPITZER_I3*bunc.fits sean_final

mv cor_sfx_SPITZER_I4*bunc.fits sean_final

mv SPITZER_I1*bimsk.fits sean_final

mv SPITZER_I2*bimsk.fits sean_final

mv SPITZER_I3*bimsk.fits sean_final

mv SPITZER_I4*bimsk.fits sean_final

cp *list sean_final

cp *list sean_intermed

mv *log sean_intermed

mv *I1*fits sean_intermed

mv *I2*fits sean_intermed

mv *I3*fits sean_intermed

mv *I4*fits sean_intermed

irac_preprocess is still subdir for all code, and

make_corrected_bcds.tcsh is still in this main dir.

We still need lists of one filename per line to give mopex to re-mosaic. Sean’s code creates these. All of the *list files got copied to sean_intermed, sean_final.

All of the *list files in this dir need to be updated to point to sean_final, rather than the flat directory structure that used to exist. These unix tricks do this:

awk '{printf("sean_final/%40s\n",$1)}' ch1234.list > ch1234.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch1_long.list > ch1_long.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch2_long.list > ch2_long.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch3_long.list > ch3_long.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch4_long.list > ch4_long.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch1_med.list > ch1_med.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch2_med.list > ch2_med.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch3_med.list > ch3_med.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch4_med.list > ch4_med.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch1_long_dmasks.list > ch1_long_dmasks.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch2_long_dmasks.list > ch2_long_dmasks.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch3_long_dmasks.list > ch3_long_dmasks.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch4_long_dmasks.list > ch4_long_dmasks.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch1_med_dmasks.list > ch1_med_dmasks.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch2_med_dmasks.list > ch2_med_dmasks.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch3_med_dmasks.list > ch3_med_dmasks.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch4_med_dmasks.list > ch4_med_dmasks.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch1_long_sigmas.list > ch1_long_sigmas.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch2_long_sigmas.list > ch2_long_sigmas.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch3_long_sigmas.list > ch3_long_sigmas.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch4_long_sigmas.list > ch4_long_sigmas.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch1_med_sigmas.list > ch1_med_sigmas.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch2_med_sigmas.list > ch2_med_sigmas.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch3_med_sigmas.list > ch3_med_sigmas.list.txt

awk '{printf("sean_final/%40s\n",$1)}' ch4_med_sigmas.list > ch4_med_sigmas.list.txt

If you want to just have lists of just the first year’s data, do this:

grep 13375232 ch1_long.list.txt > ch1_long.list235.txt

grep 13375232 ch2_long.list.txt > ch2_long.list235.txt

grep 13375232 ch3_long.list.txt > ch3_long.list235.txt

grep 13375232 ch4_long.list.txt > ch4_long.list235.txt

grep 13375232 ch1_med.list.txt > ch1_med.list235.txt

grep 13375232 ch2_med.list.txt > ch2_med.list235.txt

grep 13375232 ch3_med.list.txt > ch3_med.list235.txt

grep 13375232 ch4_med.list.txt > ch4_med.list235.txt

grep 13375232 ch1_long_dmasks.list.txt > ch1_long_dmasks.list235.txt

grep 13375232 ch2_long_dmasks.list.txt > ch2_long_dmasks.list235.txt

grep 13375232 ch3_long_dmasks.list.txt > ch3_long_dmasks.list235.txt

grep 13375232 ch4_long_dmasks.list.txt > ch4_long_dmasks.list235.txt

grep 13375232 ch1_med_dmasks.list.txt > ch1_med_dmasks.list235.txt

grep 13375232 ch2_med_dmasks.list.txt > ch2_med_dmasks.list235.txt

grep 13375232 ch3_med_dmasks.list.txt > ch3_med_dmasks.list235.txt

grep 13375232 ch4_med_dmasks.list.txt > ch4_med_dmasks.list235.txt

grep 13375232 ch1_long_sigmas.list.txt > ch1_long_sigmas.list235.txt

grep 13375232 ch2_long_sigmas.list.txt > ch2_long_sigmas.list235.txt

grep 13375232 ch3_long_sigmas.list.txt > ch3_long_sigmas.list235.txt

grep 13375232 ch4_long_sigmas.list.txt > ch4_long_sigmas.list235.txt

grep 13375232 ch1_med_sigmas.list.txt > ch1_med_sigmas.list235.txt

grep 13375232 ch2_med_sigmas.list.txt > ch2_med_sigmas.list235.txt

grep 13375232 ch3_med_sigmas.list.txt > ch3_med_sigmas.list235.txt

grep 13375232 ch4_med_sigmas.list.txt > ch4_med_sigmas.list235.txt

grep 13375232 ch1234.list.txt > ch1234.list235.txt

Return to making mosaics above and make mosaics from these new files. Use the files above that are, e.g., ch1_long.list235.txt, for the plain image stack, the list that is, e.g., ch1_long_dmasks.list235.txt, for the list of dmasks, and the list that is, e.g., ch1_long_sigmas.list235.txt, for the list of sigmas.

After we go and make the mosaics for all four channels, both exposures, you can do something like this to copy them all into the same directory:

mkdir COMEGETME

cp pbcd3.6long/Combine/mosaic.fits COMEGETME/i1long.fits

cp pbcd4.5long/Combine/mosaic.fits COMEGETME/i2long.fits

cp pbcd5.8long/Combine/mosaic.fits COMEGETME/i3long.fits

cp pbcd8long/Combine/mosaic.fits COMEGETME/i4long.fits

cp pbcd3.6long/Combine/mosaic_cov.fits COMEGETME/i1long_cov.fits

cp pbcd4.5long/Combine/mosaic_cov.fits COMEGETME/i2long_cov.fits

cp pbcd5.8long/Combine/mosaic_cov.fits COMEGETME/i3long_cov.fits

cp pbcd8long/Combine/mosaic_cov.fits COMEGETME/i4long_cov.fits

cp pbcd3.6long/Combine/mosaic_unc.fits COMEGETME/i1long_unc.fits

cp pbcd4.5long/Combine/mosaic_unc.fits COMEGETME/i2long_unc.fits

cp pbcd5.8long/Combine/mosaic_unc.fits COMEGETME/i3long_unc.fits

cp pbcd8long/Combine/mosaic_unc.fits COMEGETME/i4long_unc.fits

Looking at your final mosaics. Don’t forget to actually look at each of the mosaics you created. Do they look ok? Do they look better than the mosaics you created initially? Do they have the image artifacts removed, or at least reduced?

If you notice things that weren’t removed, you may wish to change the settings in the mosaicker – maybe change the kind of outlier rejection, depending on your coverage (for example, if you have a lot of frames per position, you may be able to do a more aggressive outlier rejection than if you have just 2 frames per position.) It is hard to screw things up with the mosaic, as long as you have at least 3 frames per position.

Source extraction using APEX. After you have nice, clean mosaics, you want to do apex-1frame source extraction on them.

Start MOPEX, and this time pick apex single frame from the file menu, and then make sure to pick the channel you want. As for the mosaicking, you’ll need to tell mopex the input files you want it to use. You have the mosaic you created, the errors, and the coverage all in the Combine-mosaic directory you generated. You might as well put the output from this in the same directory as you have the rest of the mosaicking output.

You need to tell Apex what PRF file to use. Some PRFs come with the MOPEX installation, but some more recent PRFs may also be distributed on the SSC website. The output can be very sensitive to the PRF you use, so picking the right PRF is very important. You also need to be sure that mopex knows the resample factor for the PRF – the PRF is usually oversampled compared to the mosaic. The ones that are most recently distributed are 8x oversampled, so you need to be sure that any parameter that looks like “PRF Resample X Factor” (there are a few of them) is set to 8 in this case.

For IRAC, right now, the best thing to do is use apex for aperture photometry. The best settings for most of the maps I know of is a 3px aperture, sky annulus 3-7 px, assuming you have used the default 1.22 arcsec px in creating the mosaic. The aperture corrections to be used on the photometry resulting from these values can be found in the IRAC data handbook, where you can also find other ‘standard’ aperture settings. Using a non-standard setting may mean you have to derive your own aperture correction, but depending on what your frames look like you may need to consider this.

When we did this for IRAC, we had problems getting the very last module to do what we wanted. This last module is called ‘select’ and allows you to select a subset of the objects that apex finds, and a subset of the columns, to be printed to a file. What we had to do was set up the rest of the parameters, write out the namelist, edit the namelist, update the select criteria, and then read in the namelist again. Hopefully this will be fixed in the next version. Because we want to read the output with the same software after this, we want each output to look the same, e.g., the same columns in each output will be RA, etc., so that the code can reliably pick the value from the 3rd column to be RA, and so on.

You can examine the output of this within mopex too. You can load your mosaic and have it overlay the resultant source list. The file that is created by select is in Output_1Frame/mosaic_extract.tbl (or similar name). The file that is created right before select is called Output_1Frame/mosaic_extract_raw.tbl. You should examine the output and make sure that it’s finding more sources than noise, that it’s not getting caught on too many random things, and that it’s finding all the objects you care about in the frame. You may need to diddle with the SNR cutoff or other things in select to make this work. There is a way to interactively do this in the source table overlay.

If you want to make apex see more things, then you can start diddling the parameters, but BE VERY CAREFUL because it is easy to royally screw things up and produce garbage results that might not be immediately recognizable as garbage. Things to change would be in the detect module – lower the threshold to see more fainter things, raise it to reduce the amount of garbage it finds. You can also diddle the extended object area to break up multiple objects more (or less) efficiently. You can change the number of outliers from the annulus and the method by which it calculates the background in the annulus (median/mode). For each change you make, I’d recommend changing just one parameter at a time, and then comparing the results of turning something on and off or changing a value – don’t just compare positions, also compare fluxes.

Bandmerge the result. After you have source lists from the short and long exposures, all 4 channels, you want to combine the results (preferably with 2mass, but also with mips24 ultimately). We will eventually have a GUI for this, but right now you are stuck with my IDL code.

Some of my code is hard-coded to have certain assumptions. For example, there is a routine called “readmopexoutput.pro” which assumes that the RA, Dec, and flux you want is in a particular column – update it to reflect your output. Note that there is a flag in the procedure that goes through one loop if you tell it you are using IRAC data and another if you tell it MIPS. Make sure you change the right one! Try just calling this routine to check that you have done it right:

readmopexoutput, 'i1long.extract.tbl', datalong, /irac, snr=40

plot, datalong.ra, datalong.dec, psym=1, /ynoz

The main routine is called loaddata.pro, and this will call readmopexoutput, read in each short/long pair, merge the two of those, then merge across 2mass through M24. You can turn off and on the M24 part (set domips=1 to turn on).

The code assumes certain filenames for the short/long output, and assumes that it will find a header keyword with the number of points. In order to make sure this keyword is present, you need to run a perl script.

First, copy all the source lists to one directory where you'll be working. Name them anything you want at the moment. Unpack the code in there too. You may want to mv all the files from the subdir generalutilities into the main dir, but I packed it up this way to let you know which routines you'd need to customize for these purposes. Stuff in 'general utilities' should be, well, general.

First, run fixheader.pl on the apex output. Just type

 ./fixheader.pl

and it will prompt you for information. When you're done, just hit return without an answer on one of the prompts and it will exit the program. after this point, the fixed source lists should have these names:

i1long.extract.tbl

i2long.extract.tbl

i3long.extract.tbl

i4long.extract.tbl

and you should name the 2mass file “ 2mass.huge.tbl” – it does not need to have fixheader.pl run on it.

Then, in theory anyway, you should be able to do the following:

idl (start idl)

.r loaddata (load the data and bandmerge it)

setps (open a postscript file)

.r plots2 (make several plots)

psclose (close the postscript file)

exit (get out of idl)

then you can open the idl.ps file that it creates.

Setps, 7, 9 makes the plot window be 7x9inches.

If you want to make a catalog, then, before exiting IDL, do:

makecat, data, rootname='ic2118_firstattempt'

or whatever you want for the rootname of the catalog. It will create <rootname>.cat.tbl with tons of fluxes and magnitudes.

We also asked loaddata to compare this catalog with the catalog of objects you checked in POSS for galaxy-ness before. So this is also part of the output catalog.

Loaddata is only keeping some of the stuff it reads in from the apex files. One of the parameters for readmopexoutput is the snr value. Set this lower to include more sources. You need to empirically determine where this cutoff should be for each channel, for each file, by looking at the resultant plots. You may also want to change the flux cutoff between the short and the long frames, though this is set by saturation levels and should not vary with data set.

Look at the plots and the structure in them. Look for weirdnesses and see if you can fix them by changing the snr cutoff. We found some bugs and fixed them this way.

If you have MIPS data…

The silicon (24) and germanium (70, 160) detectors are sufficiently different that it’s almost like having completely separate instruments. While all 4 IRAC channels could be treated more or less the same way, you can’t do that here for MIPS.

MIPS-24.

Data-taking mechanics. Here, for these data, the telescope is scanning along, and a little mirror rocks back and forth within MIPS to “freeze-frame” the sky on the arrays. Each exposure is the same length, and each one is offset just a little on the sky from the prior one. For MIPS-24, nearly every data frame is valid, except for the first one of every observing sequence. This “first-frame effect” means that the first frame of every commanded sequence of observations (data with the keyword DCENUM=0) have a shorter exposure time and are depressed in response by 10-15%. Unless you really need every single frame, it is just easier to drop those frames.

Make the lists of files. You need the input BCD files, listed in a file, one file per line. I don’t have any nifty tricks for removing those first frames from the list of files we need to pass mopex. So, do this:

ls ch1/*bcd.fits > inputlist.txt

and then edit the file inputlist.txt with a plain text editor.

The syntax of the filenames is similar to that for IRAC:

SPITZER_M+channel_aorkey_expid_ dcenum_version_type.suffix

Find all files with dcenum=0000. Be careful not to delete the ones with expid=0000!

Then, save this to a file. Copy this file to the other two filenames you’re going to need (errors and masks):

cp inputlist.txt masklist.txt

cp inputlist.txt sigmalist.txt

Then go edit “masklist.txt” to change all instances of bcd.fits to bbmsk.fits, and edit “sigmalist.txt” to change all instances of bcd.fits to bunc.fits.

Note that if you have photometry mode observations (rather than scan mode as the ic2118 observations are) then you have to worry about when the 24 um array is “prime” – again, because we have no shutters, when the telescope is optimizing a small field of coverage at 70 um, the 24 um array sees whatever it happens to see on the sky and still collects data. The data that are obtained when the 24 um array is prime is marked as such in the fits header, and similarly for the other arrays. If you mosaic all of the data you get when you download a photometry AOR, you may get the area you care about, plus several other random fields offset from your main object. It doesn’t hurt anything to combine it, it just takes extra time and looks funky. So if you are constructing file lists for photometry observations, be sure to only include observations in the 24 um list when the 24 um array is prime.

Start mosaicking. Start up MOPEX. Go up to the File menu and choose "new Mosaic pipeline." Pick the channel you want from the popup window – MIPS 24 um.

Fill out the rest of the input files (and the output directory) just as you did for IRAC. You have a list of bcds, masks, and uncertainties. Pick the mips24 pmask (MIPS is a lot less sensitive to cosmic rays than IRAC, so there is no time-dependent pmask, at least not yet).

Just as for IRAC, go up to the top left of the window and hit the green button that looks like "Play" on a DVD player. Sit back and watch it run. You may need to go get a soda while it runs.

When it finishes, you can examine the mosaic it produces by clicking on the buttons in the final module in the MOPEX window. It actually puts the mosaic in the output directory you selected, in a subdirectory called “Combine-mosaic.” It creates all the same output files as it did for IRAC.

We had some problems because we evidently had some hidden control characters or something on one of the lines of the file that mopex did not like. We used vi to edit the file lists to be sure that no extra hidden characters were added, and then mopex was happy.

Do you have artifacts you wish to remove? The mosaic that you produce in this fashion may very well have residual instrumental artifacts. In order to “train your eye”, look on the SSC website for example artifacts.

(http://ssc.spitzer.caltech.edu/archanaly/ under “data features/caveats” or in the data handbooks for each instrument.)

The most obvious thing we have in these data is a shift in the background levels between the first and second year’s data (the zodi background changed!). There is a more subtle waffle-like pattern we can also remove. This pattern comes from the instrument having observed a bright object either as part of our observation or prior to our observation. Note that the waffle appears in year 2’s observations, but not year 1’s.

Remove the artifacts! There is no terribly complicated suite of programs to run this time.

To run overlap correction, while in the MOPEX window where you have constructed your MIPS mosaic, you can click on the button that says “add overlap correction” and it will add the overlap module. Overlap takes lists of files just like the mosaicker does. Give it the file lists and let it run. We had some problems with the overlap module not actually correcting what it was supposed to correct. We are trying to diagnose this problem now.

The waffle pattern appears exactly the same in each frame. Therefore, to remove the waffle, you need to create a normalized median frame – this frame will contain just the structure that is the same in every frame, e.g., the background. We can then divide it out from every frame in the stack and remove the structure without changing the flux calibration. This is sort of a second flat field. The best way I know how to do this is using iraf (sorry for introducing yet another software package on you). You don’t have this on sscsci69, but you do on sscsci101. You should try to install it on your linux machines at home – you will need it eventually, though it can be a royal pain to install.

To invoke iraf, counterintuitively, you need to type “cl” at the unix prompt. IRAF calls itself a “command language”, or “cl.”

I make a median image using "imcombine" from IRAF.

 iraf% imcombine @filelist.txt median.fits

Then normalize the median image by dividing by the mean or median value of the image.

iraf% imstat median.fits

(make a note of the median value)

iraf% imarith median.fits / VALUE normalizedmedian.fits

Divide each "prime" bcd by the normalized median image. This makes a set of corrected BCDs. To avoid overwriting the old images, copy filelist.txt to outputlist.txt and use a global search-and-replace to create a list of new filenames.

iraf% imarith @filelist.txt / normalizedmedian.fits @outputlist.txt

Use the corrected BCDs as they appear in “outputlist.txt” to make a new mosaic with MOPEX. (e.g., pass “outputlist.txt” as the list of input files to the overlap corrector).

Looking at your final mosaic. Don’t forget to actually look at the mosaic you created. Does it look ok? Does it look better than the mosaic you created initially? Does it have the image artifacts removed, or at least reduced?

If you notice things that weren’t removed, you may wish to change the settings in the mosaicker – maybe change the kind of outlier rejection. Again , it is hard to screw things up with the mosaic.

Source extraction using APEX. After you have nice, clean mosaics, you want to do apex-1frame source extraction on them. This works just like it did for IRAC.

Start MOPEX, and this time pick apex single frame from the file menu, and then make sure to pick MIPS-24. As for the mosaicking, you’ll need to tell mopex the input files you want it to use. You have the mosaic you created, the errors, and the coverage all in the Combine-mosaic directory you generated. You might as well put the output from this in the same directory as you have the rest of the mosaicking output.

You need to tell Apex what PRF file to use. Some PRFs come with the MOPEX installation, but some more recent PRFs may also be distributed on the SSC website. The output can be very sensitive to the PRF you use, so picking the right PRF is very important. You also need to be sure that mopex knows the resample factor for the PRF – the PRF is usually oversampled compared to the mosaic. You need to be sure that any parameter that looks like “PRF Resample X Factor” (there are a few of them) is set to the right value for your PRF.

For MIPS, PRF fitting photometry works just fine because the PRF is well-defined (e.g., involves LOTS of pixels). The PRF flux output is the one that’s just labeled “flux” in *extract.tbl.

You should examine the output and make sure that it’s finding more sources than noise, that it’s not getting caught on too many random things, and that it’s finding all the objects you care about in the frame. You may need to diddle with the SNR cutoff or other things in select to make this work. There is a way to interactively do this in the source table overlay.

If you want to make apex see more things, then you can start diddling the parameters, but BE VERY CAREFUL because it is easy to royally screw things up and produce garbage results that might not be immediately recognizable as garbage. Things to change would be in the detect module – lower the threshold to see more fainter things, raise it to reduce the amount of garbage it finds. You can also diddle the extended object area to break up multiple objects more (or less) efficiently. For each change you make, I’d recommend changing just one parameter at a time, and then comparing the results of turning something on and off or changing a value – don’t just compare positions, also compare fluxes.

Bandmerge the result. After you have source lists from MIPS to merge with IRAC, you need to bandmerge it together. You need to run fixheader.pl on the apex result and fix the header keyword, and then name it whatever the loaddata.pro routine is expecting (can’t remember just this second). Make sure that readmopexoutput has the right columns for the output you generated before running it; do the same tests you did for irac above to check. Then go to loaddata.pro and turn on the mips data (set domips=1).

MIPS-70 and 160.

Data-taking mechanics. Here, for these data, the telescope is scanning along, and a little mirror rocks back and forth within MIPS to “freeze-frame” the sky on the arrays. Each exposure is the same length, and each one is offset just a little on the sky from the prior one. For the Ge arrays, after a certain number of sky observations, the arrays need to be recalibrated, so the mirror moves such that the arrays see a calibrator inside the camera rather than the sky. This “stimulator flash” (or ‘stimflash’) helps calibrate the instrument, and you get these frames interspersed with the data. The bit settings help mopex ignore those frames but for some reason the overlap corrector is not smart enough to ignore them (!?). There is also a LOT of instrumental gunk that can be really hard or impossible to remove from the final mosaics. The pipeline is trying to help you, and for both 70 and 160 you get a second set of files called a filtered BCD with every regular BCD. The filtered mosaics conserve point source flux but not extended flux. What this means is that you can still reliably measure point source fluxes on a filtered mosaic, but not extended fluxes. The extended flux in the filtered mosaic will have ugly sidelobes (e.g., a fake dark patch right before and after a real bright patch).

Make the lists of files. You need the input BCD files, listed in a file, one file per line. You can use unix tricks just like you’ve been doing for every other channel to do this, but be a little careful. If you just do this:

ls ch1/*bcd.fits > inputlist.txt

you will get everything that ends in bcd.fits. Note that blah_fbcd.fits is also retrieved along with blah_bcd.fits. So be more specific in what you want:

ls ch2/*_bcd.fits > inputlist.txt

ls ch2/*_fbcd.fits > inputfilteredlist.txt

The masks are the same for filtered and unfiltered, but the errors are different:

ls ch2/*_bunc.fits > sigmalist.txt

ls ch2/*_func.fits > sigmafilteredlist.txt

ls ch2/*bmask.fits > masklist.txt

Note that if you have photometry mode observations (rather than scan mode as the ic2118 observations are) then you have to worry about when, e.g., the 70 um array is “prime” – again, because we have no shutters, when the telescope is optimizing a small field of coverage at 70 um, the 24 um array sees whatever it happens to see on the sky and still collects data. The data that are obtained when the 24 um array is prime is marked as such in the fits header, and similarly for the other arrays. If you mosaic all of the data you get when you download a photometry AOR, you may get the area you care about, plus several other random fields offset from your main object. It doesn’t hurt anything to combine it, it just takes extra time and looks funky. So if you are constructing file lists for photometry observations, be sure to only include observations in the list when the array is prime.

Start mosaicking. Start up MOPEX. Go up to the File menu and choose "new Mosaic pipeline." Pick the channel you want from the popup window – e.g., MIPS 70 um.

Fill out the rest of the input files (and the output directory) just as you did for IRAC or MIPS-24 above. You have a list of bcds, masks, and uncertainties. Pick the right pmask (MIPS is a lot less sensitive to cosmic rays than IRAC, so there is no time-dependent pmask, at least not yet).

Just as for IRAC, go up to the top left of the window and hit the green button that looks like "Play" on a DVD player. Sit back and watch it run. You may need to go get a soda while it runs.

When it finishes, you can examine the mosaic it produces by clicking on the buttons in the final module in the MOPEX window. It actually puts the mosaic in the output directory you selected, in a subdirectory called “Combine-mosaic.” It creates all the same output files as it does for the other channels.

Make a filtered and unfiltered mosaic and compare the results. Do you see the sidelobes in the filtered data I mentioned above?

Do you have artifacts you wish to remove? The mosaic that you produce in this fashion will have tons of residual instrumental artifacts, I guarantee you. In order to “train your eye”, look on the SSC website for example artifacts. It will take time and just looking at a lot of mosaics to see what to believe and what not to believe. One way to do this (same for any other channel, actually), is to compare this mosaic to a mosaic from an adjacent channel. If there is a thing you are wondering about at 70, is it a real detection, go get the 24 um mosaic and overlay it. If there is nothing there at 24, it’s probably not a real thing at 70.

(see http://ssc.spitzer.caltech.edu/archanaly/ under “data features/caveats” or in the data handbooks for each instrument.)

Looking at your final mosaic. Don’t forget to actually look at the mosaic you created. Does it look ok? You may wish to change the settings in the mosaicker – maybe change the kind of outlier rejection. Again , it is hard to screw things up with the mosaic.

At 160 um, our map is unfilled, eg., there are regions of sky where no valid pixel fell at all. You can make a prettier map than the default one mopex produces by making bigger pixels (2,3, 4x as big as the default).

Source extraction using APEX. After you have nice, clean mosaics, you can to do apex-1frame source extraction on them. This works just like it did for the other channels. Note that it’s pretty rare to have 70 um stellar sources, and I don’t think we have any in ic2118. It’s even rarer to have 160 um sources. I can show you some mosaics with lots of stellar 70 um point sources if you want – look for the Perseus star forming region (either my paper, or the c2d legacy team delivery, or get & reduce the data yourself via leopard!).

If you have IRS data…

…you are probably in the wrong place. IRS takes mostly spectra. Although it does have some imaging data, we’re not covering reduction of IRS imaging data right here right now. However, the basic processing flow is similar for IRS imaging as it is for imaging with the other instruments.

