nicron

Protostar Surve (HOPS) A multi-observatory s of Spitzer identifi Protostars in the O Molecular cloud

Babar Ali presenter Tom Megeath (U. Toledo, PI)

Co-Is: Lori Allen (NOAO), Ted Bergin (U. of Michigan), Nuria Calvet (U. of Michigan), James Di Francesco (Herzberg Institute), (III Fischer (U. of Toledo), Elise Furlan (JPL), Lee Hartmann (U. of Michigan Henning (MPIA), Oliver Krause (MPIA), Sébastien Maret (Grenoble Obse mes Muzerolle (STScI), Phil Myers (SAO), David Neufeld (Johns Hopkins U Dsorio (Instituto de Astrofisica de Andalucia), Klaus Pontoppidan (Caltech), Poteet (U. of Toledo), Manoj Puravankara (U. of Rochester),

finding machine" in (

 Over 400 protostar candidat
Spanning a large luminosity
In a variety of evolutionary s
And in a wide variety of environments

→ Follow up with *Herschel*

Orion A

B

rion

ebula

luster

Blue lines: Spitzer Survey Green dots: Spitzer VSOS

λ (μm)

udy a large sample of protostars in a single cloud with mbined Herschel, Spitzer, Hubble and ground-based dar

his data we can:

Determine fundamental properties of the protostars through modeling of the

ie by Side Companson.

	Orion	NGC 281
Distance (pc)	470	2810
5.5 arc-sec equals	2586 AU	15455 AU
Number of Protostars	400+	?
Number of PBRs	A few dozen?	? (likely not detected)
Formation mechanism	Trigger + Spontaneous	Trigger
Distribution of stars	Clumped and distributed	Clumped
Types of protostars	Low and Highmass	Mostly high mass?

Expected Surprises

tzer at 24 microns

24 µm

8 µm

24 µm

70 µm

70 µm

HST

V380 Ori -

region remains dark at 70 and 160 μ m: a far-IR dark clo

as responsible for the flux decrement is wavelengthendent!? (A. Stutz)

- 0.1 M_{sun} at 70 μ m $\tau = -\ln [(f + f_{BG}) / (f_0 + f_{BG})]$
- $2.5~M_{sun}$ at 160 μm

PACS 160 μm SABOCA 350 μm LABOCA 870

R dark cloud should be bright in sub-mm Not detected SABOCA (350 μm) upper mass limit: 2.4 x 10⁻² M_{sun}

colors of stars imply $A_V \sim 10$, not 100

colors of stars inside the dark patch are bluer than those of stars outside the

Photometry Results

on

3.6 micron

EIN LOCH IM HIMMEL

HOLE IN THE SKY HOPS STOUT

MAUMEE BAY BREWING CO., TOLEDO, OHIO