Coherent ideas of what to do with these pieces
needs to be copied, updated, etc.
Simpler
Resolution Skills includes links to resolution worksheets by Dr. Luisa Rebull. The most recent ones include some of the more general stuff there as well as sources specific to regions we were studying. Similar worksheets could be developed for any given region.
Measuring distances on images - includes link to activity Finding the velocity of a high-proper-motion star in IC2118
Dustier, Messier Messier Marathon
3-color image where your own image is one of hte planes (astrometry.net if need be)
from a list of the ~500 closest stars, get Gaia, correct mags to get abs mag, get optical CMD (HRD). Extension: get 2MASS, WISE for same list. Make CMD. Why is it different? what different information is it telling you?
Making CMDs/color-color diagrams and color selection - Taurus catalog has a catalog of legitimate young stars. Use this catalog to devise your own color selection approach to find young stars. Where do these objects fall with respect to either the Gutermuth or Koenig colors? Which ones would be retrieved or lost by these color selections? Would your method work if your catalog had a mixture of young stars and field stars?
find rotation periods for set of K2 LCs - throw in periodic/not, noisy/not, sinusoidal/not, single/multi period, EBs
Harder
- IC2118 project
- CG4 project
- Li-rich giants project
bookmarked from before
wise lesson plans?
SOFIA lesson plans?
Kepler lesson plans?
oh, god, all the "working with" pages from all my summer teams up to a few years ago.
Misc. Lesson Plans, Activities, and Useful Websites Please feel free to contribute. We do ask that you include your wiki signature (click on the username/date stamp button in the edit window) when submitting lesson plans and activities. This will help users of the site in the event they have questions. Also, when posting a website, please provide a brief description of the site along with the web link.
Future Research Project Ideas Here is a place to explore future research project ideas.
Now what? So you've finished your year of NITARP and are looking for what's next...
Disclaimer of sorts -- need to get words to this effect in here: So, I am worried about this (and about the goal you listed in your other mail). I don’t want to over-sell this. If learning how to come up with research ideas could be learned from a website, there wouldn’t be ~8 years of grad school, plus another 2-4 years as postdocs, before professional astronomers are “trusted” to come up with projects completely on their own. (Yes, grad school has formal classes, but one of the big things one is supposed to learn in these 10-12 years is how to come up with one's own projects.) This isn’t a well-scripted process that can be documented like you suggest, and it’s not something that is learned even in one distinct phase or month as a grad student. In contrast, I am hoping that reproductions of past NITARP work can be constructed so as to be well defined enough to let people reproduce them. But extending those projects to go further into original science really can’t be done without a scientist mentor. I've tried some of this before, and the problems have consistently been that the teachers working on their own ran into big problems but didn’t realize that there were big problems. One tried to present a science poster at an AAS with IRAC magnitudes that were all ridiculous, but because she didn’t ask for help, I didn’t know she needed help, and she didn’t know she needed to ask for help. I have several stories like this. This ends up making everyone look bad and feel bad. So I think we should DEFINITELY NOT market this as “learn how to do original research in 5 easy steps!” …because that’s not realistic. “Learn how to use IRSA tools to reproduce complex projects” is more where I’m aiming. And for the record, we do NOT want to wander into science fairs. That community of hyper-competitive science fair people is nuts. And I really don’t think it’s fair to take a project worked on by more than a dozen people and have one student present it as their sole work at a science fair. (This has happened!)
Vandana's brainstormed list
xx just sent me this page, which should have a syllabus: https://sites.google.com/a/siena.edu/observational-astronomy/
Some ideas:
- She has a lab about CCDs. Might be interesting to show how IR data collection is different.
- How do observing strategies in the IR differ from observing strategies in the optical?
- Optical measurements of SFRs can miss a lot of the action.
- The resolution in the IR is different than the optical. What should the resolution of Spitzer be? Go get the images. Measure the PSF. Did you get what you expected?
- How does a galaxy's morphology depend on resolution?
I wonder if JWST already has tutorials like these? I'm focusing on galaxies because I'm assuming the NITARP ones focus more on stars? I need to look! In general, she's not that interested in teaching her students HOW TO GET DATA. That part should be incidental to the topics above, which she said would be the kind of thing she wants them to learn. Her link also includes a link to courses at other schools: https://sites.google.com/a/siena.edu/observational-astronomy/lab-resources/courses-at-other-schools
- Showing that stars are blackbodies? Except when they're not!
- Something about coordinate systems?
- Making color images that actually tell you the colors of stars?
- Comparing constellations with actual astronomical images?
- Planning an observing run, making a finder chart.
This professor actually teaches the Aladin interface explicitly: https://web.njit.edu/~gary/322/
- Something about proper motions? https://web.njit.edu/~gary/322/assets/Lab_3.pdf
- Looking at ZTF light curves, https://web.njit.edu/~gary/322/assets/Lab_4.pdf
- Measuring the transit of an exoplanet https://www.physics.rutgers.edu/ugrad/344/Lab5.pdf
- Fundamentals of IR spectroscopy