C-CWEL Bigger Picture and Goals

From CoolWiki
Revision as of 00:44, 8 February 2013 by Rebull (talk | contribs) (Created page with "=The big goal= We have WISE data for a patches of sky likely to harbor young stars around BRC 38. One of the signatures of young stars is that they have "more infrared than...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

The big goal

We have WISE data for a patches of sky likely to harbor young stars around BRC 38.

One of the signatures of young stars is that they have "more infrared than you'd expect" (e.g., they are redder than you expect) because of their circumstellar disk. We will use this property, as seen in the WISE data (as combined with data from some other archives), to identify new CANDIDATE young stars. The word "candidate" is important, because there is likely to be contamination in our sample from things that have colors that make them look like young stars, but they are actually not young stars. Most likely, the contaminants will be active galactic nuclei (AGN) in the distant background. The word "new" is also important -- there have been previous searches for young stars in these regions, so we need to make sure that we understand what has been done before so that we can compare what we did to what other people did, and make sure that we are not, say, announcing "OMG 30 new young stars!!!1!" when in reality 25 of them were found before by someone else, and we are rediscovering them -- rediscovering them independently, mind you, but rediscovering them nonetheless.

We will attempt to "compare and contrast" our results in this BRC with the results from prior NITARP teams (which worked with Spitzer and WISE data in other similar regions). Ideally, we will also extend this discussion to the rest of the literature.

The big question driving all of this is - Why do certain stars like our Sun 'choose' to form planets? What makes that happen? Because we can't watch a single star from start to finish, and then set it up again, perturb it in a different way, and watch it go from start to finish again, we have to assemble as many stars as possible in as many different environments in the hopes that we can statistically unravel what is going on. This is why we are looking for new young stars.

The concrete goal

We have to come up with a science poster (and an education one) for the AAS in Jan 2014. BUT because the posters can be simple or complex, this goal is a little squishy, perhaps squishier than you might be comfortable with. What I describe here (and elsewhere on the wiki) is the kind of goal I would give a grad student. But getting through even a part of it (rather than all of it) is still a success!! This may be hard to really internalize, but it's true.

The overall "story arc"

OK, so I've done this a few times before. :*) There are four potentially useful pages on the wiki with the "overall story arc" or "to-do list" describing the major tasks we have to accomplish towards actually reducing our data and analyzing it. The Working with L1688 page (from 2008) tries to explain the 'story arc' by using a cluster similar to the ones we were studying to demonstrate the tasks. The Working with CG4+SA101 page (from 2010) goes through the actual region that that group studied. The more recent Working with the BRCs page (from 2011) goes through those two regions that that group studied (this was John's year). Finally, last year's Working with the C-WAYS data page (from 2012) started out trying to help that team make it through all three regions, but we decided mid-summer-visit to limit our work to just BRC27. I found that being concrete was better than being abstract, so there will be a Working with the C-CWEL data page that will be fully updated when we get to that point.

The important part is that there are lots of exit ramps off this particular highway. If we get through only a few of those tasks, but you really understand them, that's fine! If we get through them all, that's fantastic. I expect we as a group will get most of the way through them before we have to write the poster.

The timeline

At our workshop in January, I talked about a global timeline for an entire NITARP project. Look here (link to the CoolCosmos site) for the document I distributed at the January workshop. IMPORTANT NOTES: (1) This is a schedule in the ideal case. Your mileage may vary. (2) This includes everything for the entire cycle, including applications, so that I can give it to other people and have the entire thing make sense. (We're fundraising and recruiting here too.)

The important dates are:

  • Jan-Mar - proposal prep
  • Apr-June - background work
  • June-Aug - summer visits, learn and start analysis
  • Sep-Oct - continue analysis
  • Oct? - AAS abstracts due
  • Oct-Nov - finish analysis
  • Dec - write posters
  • Jan - present them!