Difference between revisions of "Info to help you answer questions and things I just don't get"

From CoolWiki
Jump to navigationJump to search
(Created page with "OB stars are hot, massive, short lived stars that emit enormous amounts of UV which ionizes surrounding interstellar gas forming HII regions and providing ionization/shock fro...")
 
 
Line 1: Line 1:
 +
Data provided in 2002 paper - observation survey regions, dates, and exposure times; IRAS associated BRCs; H-alpha stars by BRC (BRC 27 (32 stars), 34 (2 stars), 38 (16 stars)), location, H-alpha EW, comments; H-alpha EW distribution; Finding charts (BRC 27 (chart k), 24 (chart o), 38 (chart q)); HH objects location and emission line intensities(BRC 38 only, 9 HH objects, data for 2); HH finding charts (BRC 38 only, chart d)
 +
 +
 
OB stars are hot, massive, short lived stars that emit enormous amounts of UV which ionizes surrounding interstellar gas forming HII regions and providing ionization/shock fronts to trigger star formation.  
 
OB stars are hot, massive, short lived stars that emit enormous amounts of UV which ionizes surrounding interstellar gas forming HII regions and providing ionization/shock fronts to trigger star formation.  
  

Latest revision as of 02:40, 28 April 2012

Data provided in 2002 paper - observation survey regions, dates, and exposure times; IRAS associated BRCs; H-alpha stars by BRC (BRC 27 (32 stars), 34 (2 stars), 38 (16 stars)), location, H-alpha EW, comments; H-alpha EW distribution; Finding charts (BRC 27 (chart k), 24 (chart o), 38 (chart q)); HH objects location and emission line intensities(BRC 38 only, 9 HH objects, data for 2); HH finding charts (BRC 38 only, chart d)


OB stars are hot, massive, short lived stars that emit enormous amounts of UV which ionizes surrounding interstellar gas forming HII regions and providing ionization/shock fronts to trigger star formation.

HII (H-two) regions are large, low-density clouds with large amounts of ionized atomic hydrogen and other gases. HII regions can be the birthplace of thousands of stars over millions of years until supernova explosions and stellar winds from massive stars disperse the remaining gas and leave behind a cluster (i.e. Pleiades).

Bok globules are dark dense clouds within HII regions, the result of formation of multiple star systems (can contain many young stars) that contain molecular hydrogen, carbon oxides, helium and silicate dust. Cometary globules are Bok globules that have comet like tail (can contain many young stars

BRCs (Bright Rimmed Clouds) are dense clumps of matter (can contain many young stars) in older HII regions which have been further compressed and illuminated and from which surrounding interstellar medium has been dispersed by UV radiation from nearby OB stars.

The hypothesis of small-scale sequential star formation (SSSSF) has redder stars in a BRC closer to the head of the BRC, furthest from the OB exciting star – stars are born as the shock wave moves away from the OB star, the youngest stars are the furthest from the OB star.

HH (Herbig-Haro) are short lived areas of emission nebulae from young stars (there are young stars nearby, possible still hidden in their cocoon), formed when material ejected from the poles of young stars collides with interstellar medium to produce visible light.

Hot Cirrus sources are filamentary (like cirrus clouds) structure that can be seen in the IR, but when “hot cirrus sources” are detected in an HII region, they may be YSOs that have been contaminated at the long wavelengths by emissions from the HII region.

Grism spectroscopy makes use of a prism/diffraction grating to allow light at a central wavelength to pass through. In this study a “wide H-alpha” of 6300-6750 angstroms was used.

???Author talks about JHK observations and two color diagrams, but I do not see data for this???